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1. INTRODUCTION

The idea of bounds on the optimal value of a geometric program-

ming problem has been present since the inception of geometric program-

ming (Duffin, Peterson, and Zener [5]) and has proved to be fruitful in

applications of GP. These bounds are the immediate consequences of the

duality .,eory of GP. Recently, this idea has been extended to paramet-

ric bounds on the optimal value function f* . Woolsey (in [21) derives

a lower bound on f* using the known fact that the dual objective func-

tion at a fixed dual-feasible point underestimates f* for all values

of coefficients (parameters) (see, e.g., Dembo [4]). He also shows how

to apply this result in a practical problem. Fiacco [7] has proposed a

general approach for calculating upper and lower bounds on f* (partic-

ularly simple whenever f* is convex or concave), which utilizes sensi-

tivity information as well as Wolfe's duality theory. This paper is

I [
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based on similar Ideas, except that GP duality theory is used instead of

Wolfe's duality, and the special structure of GP primal and dual problems

is exploited. Several classes of perturbed GP problems are shown to

possess convex or concave f* or at least "tight" overestimating and

underestimating problems with convex f* . The calculatiun of bounds is

illustrated for different classes of perturbations and on a simple

example problem. In this paper we are mainly concerned with posynomial

GP problems. Possible extensions to general signomial GP problems using,

for example, the idea of condensed programs (see, e.g., [11) remain to be

developed. Also, the topic of bounds on the primal and dual optimal so-

lution points is not discussed here (see, e.g., [2,4]). Bounds on f*

based on a general idea in (7] were calculated for a convex equivalent

of a GP model of a stream water pollution abatement system by Ghaemi [11]

and by Fiacco and Kyparisis (9,10]. Bounds on f* were also obtained by

Fiacco and Ghaemi [81, using results coinciding with some results of

Section 4, for a co-nvex equivalent of a GP model of a power system energy

model.

2. GENERAL PRIMAL AND DUAL BOUNDS ON THE OPTIMAL

VALUE FUNCTION OF A OP PROBLEM

A posynomial primal geometric programming problem is a nonlinear

programming problem of the form

min go(t,c)
tcem

subject to gk(t,c) < 1 , k=l,.. .,p , P0 (c)

t > 0 ,

where

-2-
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m ai

9 (t,c) - mCi t. , kO,1,...,p,
ieJk  J-1

k {1 k' k "I , ... , n } , k- O,1 ... p

m 1, M n+ , m2 , ... , m - np 1 , n n

C (CIO,....C n ) •

The exponents aij are arbitrary real numbers and the coefficients c.

are positive. The functions gk are posynomials.

By using the transformation t e we derive the following

equivalent program

min fo(X,C)
x Em P(c)

subject to fk(x,c) < 1 kfl,...,p 
P

where

m

fk(x,c) C ci e i , k0,l,...,p

izUk

and the sets Jk are the same as in P0 (c). Program P(c) is called a

transformed primal program and it is well known ([5]) that it is a con-

vex programming problem (for any fixed c).

A dual geometric programming problem corresponding to P0 (c) (and

P(c)) has the form

-3-
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n cl i p (6)
max v(6,c) R fl 1 X- (6)
6CE i Jl k=lk

subject to "k(6) - 1 61 , k1,..,p , D(c)
i Jk

6ii
iEJ 0

nX a1 6i  0,jl,..m,

6 i  > 0 , =1,.. .,n ,

where the sets Jk are defined in P (c). Under the assumption

n

:6 0 En 2 0 a j601 = 0 , j=l,...,m, 60 >0, i=l,...,n , (A)

Zangwill [13] showed that a program equivalent to D(c), with log v(6,c)

substituted for v(d,c) , can be obtained using Wolfe's duality theory.

In this paper we are concerned with bounds on the optimal value

function f*(c) of P(c). Denote by v*(c) the optimal value function

of D(c). From the duality theory of geometric programming [51 it follows

that for any fixed co , if i is any feasible point of P(c0) and is

any feasible point of D(c0), then

f0( ,c0) > f*(C0) > v*(c0) _> v0,CO .(I

It is also known [5] that if the feasible set of P(c0) is nonempty and

condition (A) is satisfied, then there exists a global solution x0  of

P(c 0 ) and

fo(xoC 0 ) f*(c 0 ) v*(c 0 ) (2)

Dembo 14] notes that since the feasible set of D(c) is the same for all

-4-
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c , any dual-feasible point 6 gives us the lower bound on f*(c) and

v*(c) based on (1);

f*(c) a v*(c) v(6,c) , V c . (3)

Woolsey (in Beightler and Phillips [2]) utilizes (3) to obtain a "tight"

lower bound on f*(c) as follows. Suppose that 60 is the optimal

solution of D(cO ) (it is necessarily a global solution, since as shown

in [5] log v(6 ,c) is concave in 6 on the dual feasible set for any

fixed c ). Suppose also that (A) is satisfied so that (2) holds. Then

from (3) and (2) we obtain

n (cj n Cf*(c) Z v(60,C) v(60,co ) i = f*(c) i , c . (4)
0 l 

i l O j0 J= O l

The above bounds as well as the optimal value functions f*(c) and v*(c)

are in general neither convex nor concave. In the next sections we will

identify classes of problems for which either f*(c) and v*(c) or the

bounds on f*(c) can be shown to be convex or concave. This is impor-

tant since it simplifies the computation of the bounds on f*(c) (both

upper and lower) and considerably enhances their applicability. These

results will be illustrated using the following example problem [5,

p. 88]:

min g0 (t,c)- cI t 
1  t-1 + c tlt + c t t t

tE3 0(~c 11 2  t3  c2 1t3  c3t1t2 3

subject to gl(t,c) - Ct2 t22 + c5 t -1l<I3 EP (c)

1 4 1  t2  52 3-0

t > 0 , i=1,2,3

(Ci > 0 , i=l,2,...,5)

-5-
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The transformed problem is of the form

-Xl- 2-X3  l+X 3 Xl+X2 +X 3

min3  f0 (x,c) = c 1 e + c2 e + c3 e

xEE1

-2xl-2x 2  2-x3

subject to fl(x,c) = c4 e -+ c e < I EP(c)
4 5

The dual problem corresponding to EP(c) is

(cljdl1 c212c3f3c4164{c5J+65 (6 4+6)
max v(6 ,c) = 64 +

subject to 61 +6+ 63 = 1,

1 2 3 4- 61 + 6 2 + 6 3 - 26 4 ff 0 ,ED((

+ 6 - 26 + 6 = 0
13 4 25

-1 + 62 + 63 - 5 = 0

i _> 0,i1,...5.

One can check taifclk 12 c2>2/7 then the optimal solution

- Tof ED(c) is 6"(C) = (1 - 2r(c), r(c), r(c), 2r(c) - , 4r(c) - 1)

where r(c) =  2 + (4/27)c I c2k c3; c41 c52)-i e ( , ) and the optimal

value function of EP(c) is f*(c) = v*(c) = v(6*(c),c) . For co =

(40, 20, 20, 1/3, 4/3) , r(cO) 0 2/5 , the optimal dual solution is

6"(c 0 = (1/5, 2/5, 2/5, 3/10, 3/5) , and one can calculate the optimal

primal solution x*(c) (0, 0, log2), and f*(c0 ) = v*(c 0 ) =

v(6*(co),Cofi 100.0. The lower bound (4) is thus easily applicable.

-6-
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3. GP PROBLEMS WITH CONVEX OPTIMAL VALUE FUNCTION

Suppose that coefficients ci are functions of the parameter

vector r - (Ei,...,er) C Er of the form ci(C) = l/hi(E) , i=l,...,n

where hi(e) are positive concave functions of F on a convex set E0

(if hi(E) = hio , then ci(e) - 1/hio remains unperturbed). A particu-

larly simple class is obtained when hi(C) = 6i > 0 , i=l,...,n. The

primal program P(c(c)) can be written as

min f0 (x,e)

subject to fk(x,e)=< 1 , k=l,...,p

where

k(,I 17-i e=l a ijxj
k jh()  j k=0,l,... ,p

If we denote by f*(E:) the optimal value function of P(E), then the

following result holds.

Proposition i. ?*(e) is convex on E

Proof. First note that ?k (x,e) can be written as

( m
fk(xe) exp -log hi(6) + ai k=O,l,...,p . (5)

i -J k  J11 ii i

Now, introducing new variables Sl,..,n , we can write P(e) in an

equivalent form as

- 7-
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min 
e

(x,s)EEmxEn iCJ 0

s i

subject to e i 1 , k=l,...,p PI(C)
ici k
1~k

m
za.x.-s i < log hi(E) i=1,...j =1 1J=l i~

Programs P(s) and PI(C) have the same optimal value function f*(c)

Since hi(E) is concave and positive for 6 C E0 , log hi(-) is con-.

cave for E E E and thus P (E) is a jointly convex program in (x,s,E)
01

with the convex optimal function f*(C) for C E0  [12]. Q.E.D.

Proposition 1 enables us to compute the upper and lower bounds on

f*(c) using the following approach proposed by Fiacco [7]. Assume that

we know the solutions x0 of P( 0 ) and x of P(EI), FEW C1 F E0"

Assume also that the conditions of the sensitivity theorem (Fiacco [6])

are satisfied at c = e and c = E Then the gradients of f*(c)

at these points exist, providing us with the lower bounds on f*(c)

E E I01 of the form Li () = f*(Ci) + VCf*(Ei)(C(a) - C.) , i=0,1

where c(a) = (I -a)c 0 + acI , a C [0,11 . The upper bound on f*(c(a))

is given by U(a) (1 - a)f*(5 0 ) + af*(Cl) . A better upper bound can

be obtained, noting that fk(x,e) are jointly convex in (x,c) for

s c E0 . This implies that x(a) =( - a)x0 + ax1 is feasible for

P(E(a)), a c [0,1] , so that f*(c(a)) 0 fo(X(a),e(a)) : U(a) , V a E [0,1]

the last inequality following from convexity of f0 (x(a),c(a)) It is

also possible to derive sharper lower bounds on ?*(c) using the dual

geometric programming problem D(c(c)). We consider this problem now.

-8I
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The dual program D(c(E)) has the form

n p X
max (6,E)- H (h()6) fl A (6)
6 n  i k
eE ~ i=l k=l

subject to Xk(6) = i6 ' K'I .. ,p
icJ k

ieJ 0

n
n aij i = 0 , j= .... m ,

6i > 0 , i=l,.....n

Denote by v*(e) the optimal value function of D(c). Under as-

sumption (A), i*(c) - f*(c) (provided that f*(E) < +-) and this,

together with Proposition 1, implies that v*(e) is convex on E0 * We

will prove it directly, together with convexity of a dual lower bound

using the following result.

Proposition 2. (i) If R is an arbitrary set in Em , F(x,E) is

concave in e on a convex set S C Er  for any fixed x C R , then

F*(E) = inf F(x,e) is concave on S
xeR

(ii) If R and S are as in (i), F(x,C) is convex

in e on S for any fixed x C R , then F*(e) = sup F(x,E) is convex
xeR

on S

Proof. (i) Let I,2C S , e [0,1] . Then

F*(XE1 + (I - X)c2) = inf F(x, Ac1 + (I - X)2
xeR

inf AF(x,cl) + (i - A)F(x,c2)xeR

> Xinf F(x,cI) + (1 - A) inf F(x,c 2 )

xeR xcR

X FA () + (1 - X)F(E 2)•

-9-
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(ii) F(C) sup F(x,e) -inf(-F(x,e)) Since -F(x,E)
xER xER

satisfies assumptions of (i), -F*(c) is concave on S by (i), so

F*(C) is convex on S Q.E.D.

Remark. Proposition 2 appears to be a variation of a well known result

of convex analysis: if all 0 E ID are convex, 4) is an arbitrary set,

then k(x) = sup O(x) is also convex (on a convex set).

Proposition 3. (i) (6,e) is convex in C on E0  for any fixed

dual-feasible 6

(ii) V*(C) is convex on E0

Proof. (i) (6,e) can be written as

v(6,E) = expil2 6 i log(hi()6i) kTl Xk( 6) (6)

(We define x log x - 0 for x = 0 .) Since h.(6) is concave and1

positive on E0 , -6i log(hi(E)60  is convex on E0 for any dual-

feasible 6 and thus v(6,£) is convex in e on E for any such 6

(ii) Denote the dual feasible set by RD . Then v*(e) = sup v(6,E)

is convex on E0  by (i) and Proposition 2(11). 
6SRD

Q.E.D.

Suppose now that condition (A) is satisfied so that f*(E) = v*(C)

Let 60 and 61 be the solutions of Dke0) and D(%I) , respectively. If

the assumptions of the sensitivity theorem hold for either problem P(c)

or D(c) at £ = E0  and E= e , then the gradients of both i*(c) and

v*(£) exist at E cog1 and we have

V (Ci) = VC *(Ci) = V Cr(6ipc) , i=O,l . (7)

- 10 -
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Since also f*(E) *(i) - ,i )  i=O,l , convexity of v(6 i, )

i=O,l implies that for i-O,l , a C [0,1]

L (a) - ('1, ) + Ve (6i, c)(E(a) - ci) 6ic(c)) , (8)

proving that v(6i,e(a)) , i=0,l , are uniformly better lower bounds on

f*(e(a)) than Li((a) In fact, to derive the above bounds we only need

the directional derivatives of f*(E) = v*(e) in directions E1 - C0

and e - El 1 If the feasible set of D(E) is compact and unique global

solutions 60 of D( 0 ) and 61 of 6(F1 ) exist, then from Danskin's

theorem [3] we obtain the directional derivatives of f*(c) at C = E0, 1

in the direction z as

D z f*(c i DzV*(Ei) = V E i)z, i=O,l (9)

Consider now a more general class of perturbations of the form

(i it )- i1
ci(e) 11 hit (E) = h (c)it=l I I=l

where h i(e) are positive concave functions of e on a convex set

0  1 Er are positive integers, and > 0 for £=i .i

i=l.....n. (The previous case is obtained by setting i = 1 , i = 1

i=l,...,n .) All results obtained in this section extend immediately to
2i

this class (note that log ci(c) =  - log hi (E) is convex on

E0 ). This allows us in particular to obtain bounds on convex f*(C)
r -Bit

for perturbations of the type ci(E) = i i ' X1 e 0,

i-l,...,n.

Dembo [4] considers a slightly more general problem than P(c) of

the form

min f0 (x,c)
x EM P(c,r)

subject to fk(x,c) < rk , k-, ...,p

- 11 -
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where rk , k-l,...,p are positive numbers and functions fk

k=0,1,. ,p are defined in P(c). If we define ci(E,r) = i(E)/r k

i E Jk , k-l,...,p , where cI(e) has the general form given above,

then it is easy to show that all results of this section extend to this

problem, too. This is also clear from the formulation of P(c,r) and its

corresponding dual D(c,r) in terms of (c,r) ,

max v(6,c,r) =1=1 i (k} D(c,r)
6CRD I i kpl

where RD is the feasible set of D(c) and Xk(6) are defined in D(c).

As an illustration of the preceding results, consider our example

problem, EP(c), with the following perturbations: c(a) = (c /(1+a),

c0 2, c0 3, c0 4, c0 5/(i+)) , oc (0,1] . The optimal value function

i*() of EP(c(oi)) is convex on [0,11 by Proposition 1. Since c(O) =

co , ?*(0) = '*(0) = 100.0 , 6 = 6 *(c(0)) = (1/5, 2/5, 2/5, 3/10, 3/5)

and x0 = x*(c(O)) = (0, 0, log2) , where vi*(a) denotes the optimal

value function of ED(c()). Since r(c(a)) = 2/(5+a) , for a = 1 ,

cI = c(1) = (20, 20, 20, 1/3, 2/3) , r(c(l)) = 1/3 , and 61 = 6*(c(l)) =

(1/3, 1/3, 1/3, 1/6, 1/3) . Calculations give us x1 = x*(c(1))

(0, 0, 0) and f*(1) = v*(1) = v(61 ,c1 ) = 60.0 . Define v(6,a) =

v(6,c(a)) . From inequality (4) we obtain convex dual lower bounds

f*(i) L(6,a) = ?(°)i 01 +6 05 100.0

and

6+6 22/3.6.
2_11 15 __2_60.0

-> v(61 ) f*(l)l--+-J1 15 ( + )2/3 ' [0,1]

The linear lower bounds on f*(a) are computed using the formulas for

- 12 -
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(6,a) , i-0,1 , as

L0 (a) = f*(0) + V(cl(60,0)a 100.0 - 80.0a

and

L(a) *(I) + V(6 1,)(a-1) - 60.0 - 20.0(a-1) = 80.0 - 20.Oa

The linear upper bound is computed as

U(a) (1-a)f*(0) + af*(1) - (1- )00.0 + a60.0 = 100.0- 40.Oi

A sharper convex upper bound is given by

f0(a) = f0(x(a),c(a))

where x(a) - (1-a)x0 + ax1 , a e [0,1] and calculations show that

- (a) 1-a1a
f = 40.0(1/2) I/(+a) + 40 .0"2  All the above bounds are de-

picted in Figure 1.

100 Legend

.. . f (a)

90 -b--(0a)

80 (a UM(a
800

70
L l(a)

60

V a

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

Figure l.--Bounds on the convex f*(a).

- 13 -
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Consider now another class of perturbations which yields a convex

optimal value function f*(c) Assume that only the coefficients of the

objective function f0 (x,c) , c - (cl,...,cn) , are perturbed and define

ci(E) = coiy(E) , 8i > 1 , i=l,...,n 0 , where y(E) is a positive con-

vex function of C on a convex set E C E r. Note that all the coeffi-

cients in f0 (x, ) are perturbed now.

Proposition 4.

(i) For any fixed primal-feasible x , f0 (x,c()) is convex in c E E0

(ii) For any fixed dual-feasible 6 and fixed = +1'-...n ) I

(E) ff= v(6,(E),8) is convex in c £ E0

(iii) The optimal value function of D(c(c)) , v(E) , is convex in

c c E0  and if condition (A) also holds, the optimal value function of

P(C(O)) , ?*(c) , is convex in e c E0 .

Proof.

() Follows immediately from the convexity of y(c)a for any > > 1

and the form of f0(xc)

(ii) Since

n0 coiy(£)0 n ci  P k(6)

inl 6 J i fn0 +l (cij k=l k

we can write

nO
n6 0no 8ii [i=l 8i6i

v(c) A H y(C) = AY(E) (10)
i=l

where

n 0 n P Xk(6) > 0

1 i n6+1 i knlk

-14-
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no  no  no

Since 6 is dual-feasible, 0i-l 6 1 1 , so that n i i 61 = I

and the result follows from the convexity of y(C) , B > 1

(iii) The first assertion of this part follows immediately from part

(ii), Proposition 2(11), and the fact that the dual feasible set R is

fixed. The last assertion is a consequence of the equality f*(C) = '*()

under condition (A). Q.E.D.

This result enables us to calculate bounds on f*(C) in a

similar way as in the first part of this section. Using Danskin's

theorem, one can find the directional derivatives of f*(E) using the

gradients of Z(e) and obtain linear lower bounds on f*(c) . The

linear upper bounds U(s) can also be obtained as before. Sharper

convex bounds (e) are available, too. However, since f0 (x,-c) is in

general not jointly convex in (x, ) , the upper bound fo(x(a),c(C(a))

x(a) = (l-c)x 0 + axi , E() = (i-c)e 0 + ac1 , a e [0,1] will not neces-

sarily be convex and better than the linear upper bound. The convex

upper bounds f0 (xi,c(e(a))) , i-0,1 , will be better than U(E(a)) only

for a close to 0 (i-0), or 1 (i-) in general.

This approach can be extended to include perturbations in the coef-

ficients ci of the constraint functions, also of the form ci(e) =
Si

coiY(C) , but with ai ,> 0 , i = no+l,...,n (note that $i> I for

i-i,...,no). It can be easily shown that Proposition 4 remains true in

this case. However, since the primal feasible set R0 now depends on

C , at least one of the solutions x0 of P( (C0)) or x1  of P(C(1))

will no longer be feasible in general for all values of e E [C0 £]

reducing the availability of upper bounds f0 (xi,c(c)) , i=0,l . Also,

in general x(a) will not be feasible, so that fo(x(a),c£(a))) cannot

-15-
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be used as an upper bound on f*(E) . The linear bounds on f*(t) and

the dual lower bounds will nevertheless remain valid.

Even more generally, Proposition 4 will be valid whenever

n 6*(c(c)) > 1 for the considered perturbations. We utilize this
n

fact in the following example where it can be shown that XJ=l 8 I6 (C(a)) =

Oa C [0,11

We now consider the example EP(c), with perturbations c(a)

(c0 1(l - a/2), c0 2, c0 3 (1 - t/2) , c04 (1 - a/2), c0 5) , a E [0,I) The

optimal value function f*(s) of EP(c(a)) is convex on [0,11 by Proposition

4(iii) (we set y(a) = 1 - ct/2, 1, B 2 0 B 3 = 2, 84 = I, a5 = 0)

Since c(0) = cO, ?*(0) *(O) 100.0, 60 6*(c(O)) = (1/5, 2/5, 2/5, 3/10,

3/5) , and x= x*(c(D)) - (0, 0, log2) . Since r(c(ct)) = (2-a)/(5-2i) ,

for a = 1 , cI = c(l) ( (20, 20, 5, 1/6, 4/3) , r(c(l)) 1/3 , and

6 =*(c(l)) = (1/3, 1/3, 1/3, 1/6, 1/3) . We calculate x, x*(c(1))

(log(l.05), log4, log(.67)) and f*(1) = 4*(1) = v(61,cI) 42.43

Inequality (4) yields the following convex dual lower bounds for

E c [0,11

>*(t) Z '(60 t) - !*(0)(1 - 01 + 03 +04 0 (1 - 3

and

i(6 a) ?*(1)(2 0 611+2613+614 42.43(2 7

The linear lower bounds on f*(a) are calculated with the help of

i-0,1 , as

L0 (a) i*(0) + Va (60,0)a = 100.0 - 65.%a

and

lb -
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LI(a) - f*(l) + Vr(61,l)(a - 1) a 42.43 - 22.05(a-1)

64.48 - 22.05a

The linear upper bound is

U(a) - (1-a)f*(0) + af*(l) 1 (1-a)100.0 + a42.43

A 100.0 - 57.57ot

Since ci(c() are nonincreasing in a , the primal feasible set is

increasing in a . Thus the optimal solution point x0 of P(c(O)) is

primal-feasible for all a e [0,1] . Since the constraint f1 (x,c) is

binding at the optimal solution point x1 of P(c(1)) for c = cI , x1

is not primal-feasible for any value of a £ [0,1) . Therefore, we can

only use the convex upper bound

f0 (x0 c(a)) - 20.0(1 -1) + 40.0 + 40.0(1 - 2

= l0.Oa2 - 50.Oa + 100.0

We depict the above bounds in Figure 2 (f*(a) is not depicted, since the

bounds U() and (Sia) , i-O,l are very tight).

4. GP PROBLEMS WITH CONCAVE OPTIMAL VALUE FUNCTION

Consider again the problem P(c) and assume that we perturb the

coefficients ci in the objective function f0 (x,c) only. Denote the

vector (cl,...,cn ) by c , the optimal value function of P(c), by
0

f*(c) and the fixed feasible set of P(;) by R0

Proposition 5. f*(c) is concave.

Proof. Follows immediately from Proposition 2(i) since f0(Xc) is

linear in c for any fixed x . Q.E.D.

- 17 -
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This result enables us to derive the upper and lower bounds on

f*(c) , given the solutions x0  of P(c0) and xI of P(cI ) and the

gradients of f*(c) at c = c0  and c = cI , in the same manner as it

was done in Section 3. However, the upper bound f 0(x(a),c(a))09

x(C) = (i - COX 0 + ax , c(a) = ( 0-a)0 + acl I a c [0,1] , will be

neither concave nor convex in general and will not necessarily

100 Legend

90. \ .q. v(61 ,a)

N
.\

80'

N

70

60 L0 (CO U(a)

50,

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

Figure 2.--Bounds on the convex f*(a).
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underestimate U1 (0) As mentioned before, directional derivatives of

f*(c) at c - coc 1  are sufficient for our purposes. Thus, if R0  is

compact and x0 and x1 are the unique global solutions of P(co) and

P( ,respectively, then by Danbkin's theorem [31 we obtain that

Dzf*(c1 ) - V~fo(xici)z = fo(xi,z) , i=O,l (11)

which means that the upper bounds on f*(c(a)) are of the form U.(c) =

fo(xiC(%)) , i=O,l , E c [0,11 . If the condition (A) holds, then the

optimal value function of D(c) , v*(c) , is equal to f*( ) and is thus

concave by Proposition 5. Now we prove concavity of the lower bound

v(6,Z) in c for any 6 and ( n (cn +1 ,...,c n ) fixed.

Proposition 6. For any fixed dual-feasible 6 and fixed C ,v(,c,c)

is concave in C
no i

Proof. Denote v0 (c) = v(6,C,c) - A(6,a) I1= ci , where

n 6i n -6 P Xk(6 )
A(6,E) ol ci I1 6i  kII Xk(6) > 0

i-n 0+1 4=1 k1 k
0|

is fixed. Calculations give us V-v (c) = [6 /cI, ... , 6 /c nv (C)
c 0 11 n 0  n 0  0

and

2
V vo(C) = Vo(c) = Vo(c) [ [6 l ' ..., 6/l - [ "c.

(12)

T 2 n
We want to show that y V v0 (c)y < 0, V y C E Since vo(c) >0 , it

it enough to show that

- 19 -
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6 /C[ 6 1 /C2 0
TY . [61/cip ....1 6n0/cnY _ yTy

1 n0 0 10

(l6iYif- O6iY 0 yEn 13- 2 1 < 0 , V y c (13)
ti=1 ci J ic

But this follows immediately from the Cauchy-Schwarz inequality [5]:

k akbk 2 L l ak2 k Z b J , V a,b C En (14)
kk=

if we set n = no , ak = 6 , bk  6 -11 (Yk/C), k=l,....,n and recall

no
that Zkl 6k Zk J 6k = Q.E.D.

If 60 uniquely solves D(cO), 61 uniquely solves D(c I) and if

the dual feasible set R is compact, then under the assumption (A),

f*(c) = v*(c) , and thus by Danskin's theorem for any z

D f*(c DzV*(i) V-v(6iO.'.')z , i=0,l (15)

This shows that the lower bounds v(6i, c(a),) , i=0,1 , are at least

initially better than the linear lower bound L(a) = (1 - c)f*(c0) +

af*(c ) but in general they do not have to be uniformly better for all

a C [O,1]

There are two ways to extend the results of this section. One way

is to assume that ci(e) = hi(s) , i=l,...,n 0 , where hi(c) are concave

positive functions of the parameter vector E = (£i,...,) . The caser

treated before is obtained when we set hi(c) = SI , i=l,...,n 0 ' One

can show that Propositions 5 and 6 continue to be true for this more

- 20 -
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general case. Upper and lower linear bounds can be obtained as before,

given the solutions and directional derivatives of the optimal value

function ?*(E) at e - c0, I . The objective function

0 j=l ax
f0 (x,E) = i hi(c) a ijj

i-i1

gives us now a sharper upper bound than the linear one, since from con-

cavity of f0 (x,e) in c for any fixed x , fixedness of R , and

equality Df*(ci) - Vef0 (xi,ei)z , iiO,l , it follows that

f*(c()) < f 0 (xi,e(c) < U(a) , i=0,l (16)

where £(a) - (I - a)s0 + ae1 , O E [0,l] and

U (a) = ?*(e) + V 0 (xi,Ei)(c(a) - ci) , i=O,l

The dual lower bound, concave by the extension of Proposition 6, applie3

as before. Another generalization is obtained by noting that Proposition

5 is valid even if some coefficients ci are negative and directions of

inequalities defining the feasible set changed. In other words, the op-

timal value function f*(c) is concave also in case of the general sig-

nomial geometric program. In this case we can still utilize linear bounds

on f*(c ) based on sensitivity information [7], although the dual bounds

may no longer be valid. In order to illustrate the above bounds, we use

the same example EP(c) as before.

Define the perturbations as follows: c(a) (col(1 - a/2),

c0(1 - 3a/4), c03, c04, c05) , c £ [0,1] . Since c(a) is linear in ax

this is the basic case and the results of this section apply, so that the

optimal value function f*(a) of EP(c(a)) is concave on [0,1] by

-21-
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Proposition 4. Since c(O) = c , f*(O) 100.0 , 60 = (1/5, 2/5, 2/5,

3/10, 3/5) , and x0 = (0, 0, log
2 ) , as determined before. Since

r(c(a)) = (2 + (I - a/2)/vr3) -  , for a = 1 , c1 = c(1) (20, 5, 20,

1/3, 4/3) , r(c(1)) = 2/5 , and 6 - 6*(c(1)) = 0 Calculations give

xI = x*(c(l)) = (log4, -log4, 0) and f*(l) = v*(l) = v(6 1,c1 ) = 50.0

Define v(6,) v(6 ,c(cx)) as before. Inequality (4) provides concave

dual lower bounds for a E (0,1]

= *01 '0a1
6 l 1 1 '02= 1o~~ 4

and

( 2 1*(1) a1 -0-- . : 100.0 -

(note that (60,a) = (61a) since 60 = 6 1). The linear lower bound

is given by

L(t) = (1-a)f*(0) + af*(l) = (l-0)lO0.0 + a50.O = 50.0- 50.Oa

The linear upper bounds are given by

u0 (a) f0 (x, c(a)) = 100.0 - 40.Oa

and

U1 (a) = f0 (x 1 '(CO)) = 120.0 - 70.Oa

We can also calculate the upper bound,

f (x(ct),c(t)) = 20.0(1 -. + 20.0(1 - L + 2.-

We depict the calculated bounds in Figure 3. (The upper bound

f0 (x(a),c(a)) is not depicted since it is almost equal to f*(a) .)

- 22 -
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f* Legend

- - - (6.,c), i=,1
100 

1

90

80

70 L(ct)
7 0T

60 U1(c0

50

40 -

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

Figure 3.--Bounds on the concave f*(c).
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5. GP PROBLEMS HAVING JOINTLY CONVEX OVERESTIMATING

AND UNDERESTIMATING PROBLEMS

Considernow frequently used linear perturbations of the coeffi-

cients ci  in both the objective function as well as in the constraint

functions of the program P(c). This "natural" class of perturbations is

not covered by any case considered so far. The optimal value function

f*(c) is in general neither convex nor concave in this case. However,

it is possible to define "tight" overestimating and underestimating prob-

lems with convex optimal value functions to which in turn bounding tech-

niques of Section 3 can be successfully applied. Specifically, consider

perturbations of the form ci(a) c (1 - d a) , where d > 0
1 Qi 1

i=l,...,n and a 6 [O,a OJ for some 0 < aO < min (l/d.) (we define
l<i<n

l/d. = +o if d. = 0 ). Obviously, if d. = 0 for some j , then the

coefficient c. will not be perturbed. Using linear bounds on the con-3

vex function 1/(1 - dia) on the interval [O,a 0O  , one can easily de-

rive the following inequalities:

1 + di(a-2 )  i+d(a-
max + da, 1 a0 ) 1 -a 0  (17)i +l a) 2' i= - d.a = 1- dia0

2i

and (substitute +I= for (l-di 0 ) 2/(l + di(a-2a0 )) when

2
L < a O max (d.) )

l<i<n

Coi_(_ -d_ _ O)_ c0  c (1-d o) 2 1

d(a-a0 1) 0 ci(1) 1ci(l-d) 1 + di1' 1 + di(a-2 O 0

Define the following geometric programming problems:

mn fU (x,a) s.t. fkl(x,a) < 1 , k=l,...,p PUI(a)
x-Em  

4

-24 -



where for a C 10,a01

kiic +i jC1 ij

2. (1d a e) ax k=0,ax

k2 ~iEj £ c-a0

U U

for a E (ca 0 J , and fk2 (x,a) +~,k=0,l,... ,p for a C [0,&L 0

a max{0, 2a~ 0 mini (1/d1)}

min f (X,) Co S.t. L X ) 1,PO
xEEm 0fkxa)<1, kl..pPc)

where for a E [O,a 0 ]

fkL(x,a) 1 1 d -0" e J, ix k=0,l,...,p (21)

From (18) it follows that for a E (0,a 0 j x E Em

f L(x,a) :S fk(x,c(a)) < min f U (x,a), f U (x,a)~ k'=0,l,... ,p (22)

This inequality assert;! that both PU 1(a) and PU 2(a) are the overestimat-

ing problems for P(c(a)) and that PL(a) is the underestimating problem

for P(c(a)), where a e [0,a 0 1

Denote by f* U(a) ,f*U(a) ,and f* L(a thopilvlu nc1 2(a thopilvaefuc

tions of the programs PU I(a), PU 2 (ai), and PL(a), respectively. (Note

2htf a o [0,& 0]. From inequality (22) we obtain for

-25-
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a C [O,a1 ]

f *L (a) f f*(c (a)) min f*U (at). f* U(a)~ (23)

L(x,O) fk(x,c(O)) = f (X,O) and f(L ) = f (x,C(aSince fk k k k

f 2(xC0) for k=0,l,...,p and x c Em , we also have that

L2 0

f*L (0) f*(c(0)) = f U(0) (24)

and

f*L(a) f*(c(a0)) = f U(ao) (25)

which proves that the bounds on f*(c(a)) are "tight" at a = 0 and

a = O0
0

The appealing feature of problems PUI(a), PU2(a), and PL(a) is

that they are jointly convex in (x,a) (PU2 (a) is jointly convex in the

extended sense) and therefore possess convex optimal value functions

f*U(a) , f*U(a) , and f*L(a) , respectively. This is immediately seen

from the fact that the coefficients in all the above problems' functions

are of the form l/hi(a) , where hi(a) are linear positive functions of

a , and Proposition 1 of Section 3. Since f* L(a) underestimates

f*(c(a)) , convex dual lower bounds as well as linear lower bounds on

f*L (a) can be calculated using results of Section 3 and then used as

lower bounds on f*(c(a)) . Similarly, convex or linear upper bounds on

f*U(a) and f*U(a) can be computed also, using results of that section

1 2
(in the case of f U(a) for a such that f U(a) < +o ), providing us

with upper bounds on f*(c(a)) by virtue of inequality (23).

The approach described here can be extended to the case where the

C's are concave and, e.g., decreasing functions of a parameter a . We

- 26 -
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will not discuss this idea in detail here, since the derivation of bounds

in this case is similar to one described above.

Consider once more our example problem EP(c), with perturbations

c(a) - (c01 (l _ (5/8)a), c0 2, c0 3, c04 (l - c/4), c05 (1 - c/2)) . Since

dI  5/8 , d 2 =0 d 3 = 0 , d4  1 1/4 , d5  1/2 , min (/d.) = 8/5
1<i<5

and we choose aO = 1 . Since( 5
r(c(a)) - 2 + 1 : for 2 '1 - a 

c= c(l) - (15, 20, 20, 1/4, 2/3) , r(c(1)) = 1/3 , and 61 = 6*(c(1)) =

(1/3, 1/3, 1/3, 1/6, 1/3) . From calculations we obtain x1 = x*(c(l))

(log(.86), 0, 0) and *(l) = v*(1) - v(6
1 ,Cl) = 51.96 . The overesti-

mating problems are of the form

min f (x,a) -c01  el 2 3 +c l+3 e 12+3

xcE3 002 03

c0 4  -2x1-
2x2  c0 5  x 2-x3subject to (xa) e + e < 1 EPU (a)

11 iala-1
4 2

for a e (0,i] ai.,

U6-c 04 -X1 - X2-X3  X1 X3 12+3min f02(xa) e +c e +c e
xE 3  1 + § (a-2) 02 03

9 19 -2xl-2x 1c x2-x3
subject to f1( ( '04 e 1 2+ 405 e < 1

1 + (a-2) 1 + - (a-2)-

EPU 2 (a)

for a c (2/5, 11 (for a E [0, 2/5] we define fk2(x,a) =+o for

- 27-
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k=O,l , all x C E ). The underestimating problem is defined for

C C [0,11 as

min fo(xci) 8 01 e + c0 2 e 3 + c0 3 e

xEE3  1 + A (a-1)

3
.4 C 0 4  -2xl- 2x 1 05 2-x3

subject to f = e + 1 e <I
1 +_ (a-i) 1+2 (a-l)

EPL(a)

The above three problems have convex optimal value functions

fU(a) , f*(a) , and f* (a) , respectively, for a C [0,1]

Recalling from Section 2 that for Q = 0 , c0 = (40, 20, 20, 1/3,

4/3) , 60 = 6"(c0= (1/5, 2/5, 2/5, 3/10, 3/5) , 0 = x*(cO) = (0, 0,

log2) , and f*(0) = v*(0) = 100.0 , application of inequality (4) gives

us convex lower bounds on f*(Oc) , a E [0,I) , as follows:

6 016 0460
f*(a) > '69' i*(O)F 3/8 014 04 12 10

Ll+ 8c- ~ L+ .4 l)+ L

100.0

+ 1 .6 ( + 1)"6

f*(a ? (61 i =O j*(l) [6+.~~l 11 [OL + aj 14 [~+1 15

95.24

+ .~t1/3 (1 + -. 1/6 (1 + 0 /

The linear lower bounds on f*() can be easily computed using the

formulas

- 28 -
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L O(a) f*(0) + Ve-(6o,0)ca 100.0 - 86.67a

and

L 1 (a) - f*(l) + V e(5 ,l)(0-l) -51.96 -21.65(a-1) =73.61 - 21.65a

In order to obtain an upper bound we solve the dual of the problem

EPU (a) for a - 1 , obtaining c1 U (320/13, 20, 20, 4/15, 8/9)

r(1) = 52/149 ,and 6 - 6*U (c)- (45/149, 52/149, 52/149, 59/298,

59/149) . From this we calculate f! U(l) = v(t51 1 ) 68.34 and

x U M (c* ) ( (log(.9), 0, log(1.325)) . Since f* U(0) = i*(0) =100.0,

the linear upper bound on f*(a) for a e [0,1] can be obtained fro~i

the formula

U(M) - -a)f* (0) + aft (1) A(l-at)lO0.O + a68.34

-100.0 - 31.66a

A better convex upper bound can be obtained in the form f U1(x (a t

x(a) -(l-a)x 0 + ax , a £ [0,1] .The above bounds are depicted in

Figure 4.

-29-
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Figure 4.--Bounds on f*(a).
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